
LLNL-TR-400667

"Eztrack": A single-vehicle
deterministic tracking algorithm

C. J. Carrano

January 23, 2008

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

“Eztrack”: A single-vehicle deterministic tracking algorithm
C. Carrano, LLNL

June 6, 2007

1.0 Introduction

A variety of surveillance operations require the ability to track vehicles over a
long period of time using sequences of images taken from a camera mounted on an
airborne or similar platform. In order to be able to see and track a vehicle for any length
of time, either a persistent surveillance imager is needed that can image wide fields of
view over a long time-span or a highly maneuverable smaller field-of-view imager is
needed that can follow the vehicle of interest. The algorithm described here was
designed for the persistence surveillance case.

In turns out that most vehicle tracking algorithms described in the
literature[1,2,3,4] are designed for higher frame rates (> 5 FPS) and relatively short
ground sampling distances (GSD) and resolutions (~ few cm to a couple tens of cm).
But for our datasets, we are restricted to lower resolutions and GSD’s (≥0.5 m) and
limited frame-rates (≤2.0 Hz). As a consequence, we designed our own simple approach
in IDL which is a deterministic, motion-guided object tracker. The object tracking relies
both on object features and path dynamics. The algorithm certainly has room for future
improvements, but we have found it to be a useful tool in evaluating effects of frame-rate,
resolution/GSD, and spectral content (eg. grayscale vs. color imaging). A block
diagram of the tracking approach is given in Figure 1. We describe each of the blocks of
the diagram in the upcoming sections.

Figure 1: Block diagram of tracking approach.

Raw
Data

 Update
track

 file
Feedback new object template, position, & velocity

Rectification
and/or

stabilization

Create mover
detection

(blob) map
sequence

Select object

(interactively
or coordinates)

Predict next position
& locate candidate
regions including
stationary case

Calculate
metrics for
each candidate
region

Select next
object location
base on good
metrics.

2.0 Pre-processing: Stabilization

The tracker treats the image sequence as if it were acquired from a stationary
platform. As a result, it is necessary for the data to be stabilized from frame to frame. For
much of the data available to us, it was both geo-registered[5] and then stabilized with a
translation, rotation, and scale sensitive stabilization algorithm[6] to remove small geo-
registration errors. In some other datasets where geo-registration was not possible we
performed affine image registration[7] to register all the frames of the sequence to a
reference frame.

3.0 Vehicle Selection

Before tracking can begin, it is necessary to select the object to be tracked, either
automatically or manually. Rather than automatically try to detect multiple vehicles and
follow them all, the tracker simply requires that the pixel coordinates of a bounding box
around the vehicle be supplied. The software allows the user to input them directly or
draw them interactively. When using fast frame rates, it is sufficient to perform the
vehicle initialization with a single frame, because the vehicle will not move very many
pixels to the next frame. But with slower frame rates, it is necessary to initialize the
tracker with boxes around the same vehicle in the first and second frames. This allows
the initial velocity to be known and used in the prediction of the location in the next
frame. Figure 2 shows a box drawn around the vehicle to be tracked. Future plans
include working on the track initiation problem.

Figure 2: Box drawn around the target to be tracked

4.0 Mover detection

There are many motion detection algorithms described in the literature[8][9] each with its
own strengths and weaknesses. Eztrack was written in a modular fashion so that any
mover detection method can be tested or used. Since the data is always pre-stabilized
before tracking, contains small movers, and has slow frame-rates, we chose three-frame
differencing[1] for the initial default mover detection algorithm. It is fast for large

datasets and can easily be adapted to multi-spectral data. The three-frame differencing
algorithm is quite simple: A pixel is chosen to be moving if:

)()()(11 xTxIxI nnn >−+ AND)()()(21 xTxIxI nnn >− − [1]

Figure 3: Illustration of three-frame differencing in 1-D

Where In(x) is the intensity of the pixel at spatial coordinate x for frame number n, and
Tn(x) is a threshold defining a statistically significant intensity change at each pixel
location which we currently define as a percentage of the maximum intensity change (i.e.
max(∆I) * scale factor.) This scale factor is allowed as an input to the mover detection
routine. Typical values for this scale factor are 5% to 15%. We also allow the option to
have the threshold vary over the image or let it be a constant value, though we have not
exercised the variable threshold option yet.

If the imagery is multi-channel, we have several choices. We can form a
grayscale intensity image from the multiple channels and proceed as before. Or we can
try something that takes advantage of the multiple channels, such as the popular
Minkowski metric[11], replacing the intensity differences from Equation 1 with:

)...()()(
/1

1
,1, xTxIxI n

ppm

k
ikik >










−∑

=
+ [2]

Where k is the channel number (e.g. color - R, G, B), i is the frame number and x is over
space. If p =2, equation 2 is a Euclidian distance metric. We have found good results
with p=3 as well.

Once the initial mover map is created, it is necessary to remove very small
detections and perhaps very large detections. A blob region-size filter is applied to keep
only mover blobs greater and/or less than a certain size. Typical minimum blob sizes are
3 to 5 pixels, but it can vary depending on image resolution and the size of the objects of

S1
S2 2-frame difference D1 = |S1-S2|
S3
A square signal moving in time

 2-frame difference D2 = |S3-S2|

When ANDed together it leaves a
single mover detection

interest. The effect of the threshold and minimum blob size is shown in Figure 4. It is
possible to apply any number of image segmentation routines to the mover map to either
enhance movers of interest or reduce uninteresting or false movers. Future work will
include investigation into this area.

Once the final mover map is created, it is then used to guide the tracker.

Image (In(x)) T= 5%, MinBlobSize=3 pixels

T = 5%, MinBlobSize=10 pixels T = 5%, MinBlobSize= 50 pixels

T = 10%, MinBlobSize=3 pixels T=20 %, MinBlobSize= 3 pixels

Figure 4: Effect of Threshold and blob region size filter on the mover map.

5.0 Tracking

After getting the initial position, optional initial velocity estimate, bounding box of the
object (section 3.0), and the mover map for each frame (section 4.0), the tracker loops
over the frames. At each frame it predicts the position of the object based on the previous
position and the last known velocity (i.e. pn+1 = pn + vn ∆t)

Within a user-defined radius (e.g. typically 10 to 25 pixels) around the predicted
position, it searches for candidate blobs in the mover map, including the stationary case
which is not part of the mover map. The candidate blobs are identified and labeled by
multiplying the current mover map frame by a binary circular mask with its center at the
predicted position and with a radius of the maximum position deviation allowed. A
segmentation routine such as IDL’s label_region.pro is used to label each blob for the
search. It then loops through those candidate positions, including the stationary case, and
computes several quantities to determine where it thinks the object moved to (or didn’t
move to). The tracker currently uses four basic metrics to determine the object location
in the next frame:

• Cross correlation
o The peak of the cross-correlation between the mean-removed,

hanning-windowed object template and candidate object. (In some
cases we tested the cross correlation of the Laplacian of the objects
which was helpful sometimes when resolution was reduced or the
object was small.) A running average value of the maximum
correlation value over time is also kept.

• Path-coherence (Φ) [10]
o Checks to make sure that the direction and velocity changes in

consecutive images are smooth.

o)21()cos1(),,(
1

1
2111

+

+
+− +

−+−=Φ
kk

kk
nnn ss

ss
wwPPP θ , where the

variables are described in Figure 5. We found it suitable to equally
weight w1=w2=0.5. A value near zero means very good path
coherence (e.g. < 0.2)

Figure 5: Path coherence, definition of the angle θ and the distances sk
and sk+1. The Pn’s are the center positions of the objects.

• Velocity difference
o A simple difference of the potential new velocity from the previous

velocity. (In pixels per frame, but could translate to a real velocity
such as meters/sec). A maximum acceptable velocity difference is set
in the beginning of the code and can be set by the user. Typical values
used for our data was 10 to 25 pixels/frame.

o We have this redundant metric because we found that path coherence
alone was not sufficient to make the best choice.

• Average intensity difference for grayscale imagery, average hue difference for
color imagery, or a minimum matched filter threshold for multi-band data.

o The average intensity, hue, or spectral matched filter is calculated over
the moving object regions to be checked in the current frame and
compared to that of the previous frame. An overall threshold has to be
met for that candidate region to be considered at all and small intensity
or hue differences are given stronger weighting in choosing the next
position of the object.

A somewhat complicated set of checks and cross-checks is performed on each of
the four values to determine the next position of the object. These checks can be easily
modified to fit the nature of the data if need be. For example, we could put more
emphasis on the correlation for higher resolution data or put more emphasis on the path
dynamics for lower resolution data. In general, we are looking to find the object that has
the minimum average intensity (or hue) difference, highest correlation, best path
coherence and least velocity difference. But often, that is not the case and we find one or
two of the values will be second or third choice. So the trick is in how much weight to
give to each metric and in what situations. Sometimes the correlation will be high, but
the path coherence or velocity difference will be bad, so the algorithm may not pick that

Pn θ

 sk sk+1 Pn+1

Pn-1

target if it finds another object that has a better path coherence and velocity difference so
long as the correlation is higher than some threshold (a percentage of the maximum
correlation found). The logic of one grayscale version of the algorithm is similar to the
following:

If (IntensityDiff < Thresh(e.g. 60))
{
 If (PeakCorr > MaxPeakCorr) OR

(PathCoh<0.25 AND PeakCorr>0.5*AvgCorr AND VelDif<MinVelDif) OR
(PathCoh<0.05 AND PeakCorr>0.2*AvgCorr AND VelDif<MinVelDif*0.25)

{
If (VelDif < MinVelDif AND PathCoh<MinPathCoh) OR

{VelDif < MinVelDif AND PeakCorr>MaxPeakCorr)
{

Update MaxPeakCorr
Update MinPathCoh
Update MinVelDif
Update Mover choice

}
}

}

If no objects can be found with high enough correlation or good enough path
dynamics, then the tracker indicates that there was no match and will assume the target
became occluded and predict the location of the object in the next frame and search again
in the frame after that. The prediction simply sets pn+1 = pn + vn ∆t, and it does not
update the template of the object in that case. If after a pre-defined number of frames
(e.g. 2 to 5) the object is not picked up again, it assumes the object is lost and stops trying
to track it.

A text file with the object position (center), bounding boxes, and velocities is
saved for future use such as displaying multiple tracks back on the data. The object
template sequences can also be saved.

Figure 6 shows sample frames of the detected track overlaid on a stationary car
that begins to move and turn a corner. The GSD is 0.5 m and the frame-rate is 2.0 Hz.

Initial frame with user drawn box Detected car location after 30 frames

Detected location after 40 frame Detected location after 45 frames

Figure 6: Tracking example where a car is stationary for 30 frames then starts to move
and turn a corner.

Summary and Conclusions

The optimal metrics and how best to use them in tracking vehicles or other objects
is still under investigation, but the current tracker implementation works satisfactorily
(>70-80% success rate) on many of the datasets we have access to with variable
resolutions and frame-rates. Of course, it works best in uncluttered environments with
distinct looking vehicles (Resolution/GSD < 1 m/pixel) and at better frame rates (>1 Hz),
but we have demonstrated good performance at the 0.5 Hz rates depending on resolution
and traffic density. Future work on this tracker will include expanding it to multiple
vehicles, alternative mover detection schemes, allowing the bounding box to change size,
and continued work on best choice and use of the track feature metrics.

References

[1] R. T. Collins, et. al. “A System for Video Surveillance and Monitoring”, VSAM
Final Report, Carnegie Mellon University, 2000
http://www.cs.cmu.edu/~vsam/research.html

[2] A. J. Lipton, H. Fujiyoshi, R. S. Patil, “Moving target classification and tracking
from real-time video”, Applications of Computer Vision , 1998. WACV ’98.
Proceedings., 4th IEEE workshop on, Pg 8-14, (1998)

[3] W. Bell, P. Felzenszwalb, D. Huttenlocher, “Detection and long term tracking of
moving objects in aerial video”, Technical Report, Computer Science, Cornell, March
1999
http://www.cs.cornell.edu/vision/wbell/identtracker/

[4] G. Baldini, et. al. “A simple and robust method for moving target tracking”, SPPRA
2002

[5] M. Kartz, L. Flath, R. Frank, “Real-Time GPS/INS Correlated Geo-Registration and
Image Stabilization of Streaming High-Resolution Imagery Utilizing Commercial
Graphics Processors “,UCRL-ABS-204226

[6] B.S. Reddy and B.N. Chatterji,”An FFT-Based Technique for Translation, Rotation,
and Scale-Invariant Image Registration”, IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 5(8), pp. 1266-1271, 1996

[7] M. Duchaineau, “Progressive Dense Correspondence with Applications to Video
Analysis”, UCRL-ABS-225824

[8] M. Piccardi, “Background subtraction techniques: a review”, The ARC Center of
Excellence for Autonomous Systems, Faculty of Engineering, UTS, April 15, 2004
www-staff.it.uts.edu.au/~massimo/BackgroundSubtractionReview-Piccardi.pdf

[9] S. Cheung, C. Kamath, “Robust techniques for background subtraction in urban
traffic video”, Proceedings of the SPIE, Volume 5308, pp. 881-892 (2004).

[10] M. Sonka, V. Hlavac, R. Boyle, “Image Processing, Analysis, and Machine Vision”
2nd ed., PWS Publishing, pp. 700-702 (1999) ISBN 0-534-95393-X

[11] C. C. Chibelushi, Presentation : “Statistical Pattern Recognition, Part 1: Clustering”,
Staffordshire University, 2007
www.soc.staffs.ac.uk/ccc1/IPCVPR/IPCVPRpatrecPI04.ppt

Disclaimer
This document was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

Auspices Statement
This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

